Лечение синдрома Дауна
  • Что делать с лишней хромосомой?

  • Лечение синдрома Дауна
  • Главная » Здоровье
  • 5 января 2022 г. 9:20
  • Короткая ссылка: Y6K9e

Отчего человек болеет? Этот вопрос всегда интересовал как врачей, так и самих пациентов. Тысячи лет наблюдений и опытов, заблуждений и гениальных догадок позволили ученым установить причины множества болезней, а значит, эффективнее лечить больного или предотвращать заболевание здорового.

И все же ряд недугов долгое время оставались непознанными. Они преследовали семьи из поколения в поколение и считались не иначе как фамильными проклятиями. Так продолжалось до тех пор, пока не появилась наука генетика.

До ее появления вопрос о наследственной природе того или иного заболевания оставался довольно запутанным. К наследственным болезням нередко относили, например, сифилис: дети страдающих этой болезнью женщин часто были поражены ею от рождения. Хотя еще в 1814 году лондонский врач Адамс справедливо предположил, что в данном случае дело не в наследственности, а в специфическом пути заражения: возбудитель болезни проникает из материнского организма в плод во время беременности. С другой стороны, у медиков не было оснований относить к наследственным болезням, например, синдром Дауна, описанный еще в 1866 году. “Дауны” рождались у совершенно здоровых родителей, а сами, как правило, потомства не оставляли.

Только в ХХ веке наука установила, что наследственные качества передаются от родителей потомству в виде неких дискретных единиц — генов, которые объединены в большие блоки — хромосомы. Все клетки, кроме половых, несут двойной набор хромосом, одна половина которого достается человеку от отца, а другая — от матери. Поэтому по-настоящему наследственными можно считать только такие болезни, причиной которых являются те или иные поломки в генетическом аппарате.

Некоторые из этих поломок оказалось возможным увидеть воочию. После того как генетики научились “узнавать в лицо” каждую из 23 пар человеческих хромосом, выяснилось, что некоторые хорошо известные заболевания всегда или почти всегда связаны с вполне определенными отклонениями в хромосомном наборе. Так, болезнь Дауна оказалась следствием того, что в клетках имеются не два, а три экземпляра 21-й хромосомы (такой феномен генетики называют “трисомией”). Трисомия по другой, 13-й паре хромосом приводит к рождению детей с резким недоразвитием головного мозга, тяжелейшими врожденными пороками сердца и рядом других грубых дефектов развития, приводящих к быстрой смерти новорожденного. Этот характерный набор симптомов описан медиками еще в XVII веке, но сегодня носит название “синдром Патау” по имени немецкого исследователя Клауса Патау, установившего в 1960 году причину заболевания. Лишняя половая хромосома приводит к болезни, известной под названием “синдром Клайнфельтера”: его обладатели анатомически принадлежат к мужскому полу, но бесплодны, а их молочные железы часто развиваются по женскому типу. Кроме того, этот синдром сопровождается умственной отсталостью, вялым темпераментом, затрудненностью речи и некоторыми другими нарушениями поведения.

Бывает и наоборот: одно хромосомное нарушение у разных людей проявляется по-разному. В том же 1960 году Джон Эдвардс доказал, что тяжелые аномалии развития, считавшиеся самостоятельными заболеваниями, вызваны одной и той же причиной — опять-таки трисомией, на сей раз по 18-й хромосоме. Сейчас это нарушение называется “синдромом Эдвардса”.

Трисомиями и вообще избытком хромосом список болезней, конечно, не исчерпывается. Пагубные последствия для организма имеют практически все хромосомные мутации: потеря отдельных хромосом (моносомия) или их пар (нуллисомия), потеря частей хромосом (делеция и дефишенси), перемещение части одной хромосомы в другую (транслокация) и даже инверсия — перестройка, при которой участок хромосомы переворачивается на 180 градусов, оставаясь при этом на своем месте. Например, заболевание, известное как “синдром кошачьего крика” (название связано с характерным высоким и резким, похожим на кошачье мяуканье плачем больных малышей), вызывается утратой значительной части пятой хромосомы.

Впрочем, даже детальное знание механизмов хромосомных болезней мало помогает в их лечении. Современная медицина не располагает средствами, позволяющими убрать лишнюю хромосому или вернуть на место перевернутый, перемещенный или потерявшийся ее кусок десяткам триллионов человеческих клеток. В большинстве случаев невозможно и симптоматическое лечение. Болезнь выражается не в избытке или нехватке какого-либо вещества, а в грубых нарушениях согласованности поведения разных групп клеток во время эмбрионального развития. Когда ребенок с такими нарушениями появляется на свет, исправлять что-либо обычно бывает уже поздно.

Зато хромосомные болезни лучше других поддаются диагностике. Для этого нужно на достаточно ранней стадии беременности взять пробу околоплодной жидкости, выделить из нее клетки эмбриона и заставить их делиться. При высокой квалификации лаборанта не заметить лишние или патологически измененные хромосомы (а также нехватку какой-либо из хромосом) просто невозможно.

Гораздо более многочисленную группу заболеваний составляют болезни, вызванные изменениями в отдельных генах. Выше уже говорилось, что ген — это порция наследственной информации, контролирующая определенный признак организма. Если более точно, то гены — это участки ДНК, и закодированы в них не признаки, а белки. По сути, работа гена есть не что иное, как перевод текста из одних символов в другие, точно такой же, как перевод электрических сигналов от клавиатуры компьютера в знаки на его экране. Однако белок — это особый “текст”: будучи синтезирован, подобно волшебному заклинанию, он может непосредственно воздействовать на молекулы. Но если случится ошибка хотя бы в одной “букве”, он может уничтожить или изменить их самым непредсказуемым образом.

К настоящему времени уже достаточно твердо установлено, что наш геном включает в себя примерно 22 000—23 000 структурных (то есть кодирующих белков) генов. Каждый из них делает что-то нужное для клетки или для организма в целом, и любой сбой, по идее, должен отражаться на его работе. Если учесть, что структурные гены состоят из многих сотен, чаще всего из тысячи и более нуклеотидов, то число теоретически возможных генетических болезней должно выражаться десятками миллионов.

Однако современная медицина, согласно разным классификациям, насчитывает немногим более 5 000 генных болезней. Как ни внушительна эта цифра, приходится признать, что она, по крайней мере, на несколько порядков меньше теоретически возможной.

Логично было бы предположить, что коль скоро генетические болезни вызываются неправильной работой того или иного гена, то у всех больных они должны начинаться с момента рождения (или даже еще раньше) и протекать более или менее стандартно. На самом деле эти болезни начинаются в самые разные сроки. По оценкам специалистов, из болезней, обусловленных мутацией одного гена (а их среди генетических недугов большинство), до 25 % проявляется в ходе внутриутробного развития. Первые признаки примерно 45 % болезней приходятся на детство — до начала полового созревания. Еще 20 % проявляются в подростковом и юношеском возрасте. И лишь 10 % болезней развивается в возрасте старше 20 лет. Однако в обширном списке генных болезней есть и такие, которые поражают человека только во второй половине жизни. Неизлечимая хорея Хантингтона (приводящая к утрате контроля над движениями, потере координации, а через несколько лет — к смерти) обычно развивается в 35—40 лет, хотя может начаться и в 6, и в 60. А болезнь Альцгеймера (некоторые формы ее ведут себя как классическая генная болезнь) характерна для настоящей старости: она крайне редко начинается раньше 60—65 лет.

Вряд ли можно назвать другую область медицины, в которой столь впечатляющий прогресс фундаментальных знаний (а также диагностики) сопровождался бы столь незначительными практическими успехами в лечении. Сегодня медицина знает “адрес” почти всех генов, мутации в которых вызывают наследственные болезни. В ряде случаев ясен даже механизм развития недуга. Однако лечение этой группы заболеваний остается в основном симптоматическим, если вообще существует.

В некоторых случаях, впрочем, оно оказывается вполне эффективным. Возьмем, например, фенилкетонурию: когда отсутствие фермента фенилаланингидроксилазы превращает одну аминокислоту (фенилаланин) в другую (тирозин). Во время внутриутробного развития этот дефект не проявляется: эмбрион получает достаточное количество тирозина через плаценту, и тем же путем из его тканей выводится избыток фенилаланина. Но сразу после рождения над младенцем нависает страшная угроза: накапливающийся фенилаланин начинает превращаться в токсичные вещества. И раньше малыш с таким недугом был обречен на тяжелое слабоумие. Но сейчас строгая многолетняя диета с почти полным исключением натуральных белков и заменой их аминокислотными смесями, не содержащими фенилаланин, позволяет практически полностью предотвратить все проявления болезни. Но это скорее исключение, чем правило. Чаще жертвы генетических болезней обречены всю жизнь вводить себе поддерживающие препараты (диабетики — инсулин, больные гемофилией — донорские факторы свертываемости) и соблюдать обременительные ограничения. Во многих же случаях медицина способна лишь ненадолго продлить жизнь и облегчить страдания людей, обреченных на скорую смерть собственными генами.

Можно ли радикально изменить эту ситуацию? В последние годы большие надежды вызывает идея генной терапии — искусственного введения в клетки больного нормальных версий соответствующего гена. Уже проведены сотни обнадеживающих исследований на животных (в частности, английские ученые разработали схему генного лечения муковисцидоза), некоторые методики дошли до стадии клинических испытаний и даже экспериментального лечения безнадежных больных. Однако оказалось, что сама процедура внедрения “дополнительных” генов в человеческие клетки таит неожиданные опасности, что сильно затормозило практическое применение этого метода. Кроме того, ученые пока могут ввести в клетки “здоровый” ген, но не в силах убрать из них “больной”. Это тоже ограничивает применение метода в случаях, когда болезнь обусловлена избыточной активностью дефектного гена или токсичностью его продукта. И все же врачи и исследователи не теряют надежды на радикальный прорыв в лечении генетических болезней в ближайшие одно-два десятилетия.